1

Human neural stem cell therapy for chronic ischemic stroke: charting

progress from laboratory to patients

John Sinden, Caroline Hicks, Paul Stroemer, Indira Vishnubhatla and Randolph Corteling

ReNeuron, Pencoed Business Park, Pencoed, Bridgend, UK, CF35 5HY

Abstract

Chronic disability after stroke represents a major unmet neurological need. ReNeuron's development of a human neural stem cell (hNSC) therapy for chronic disability after stroke is progressing through early clinical studies. A Phase I trial has recently been published, showing no safety concerns and some promising signs of efficacy. A single arm Phase II multicenter trial in patients with stable upper limb paresis has recently completed recruitment. The hNSCs administrated are from a manufactured, conditionally immortalized hNSC line (ReNeuron's CTX0E03 or CTX), generated with c-*myc*ER^{TAM} technology. This technology has enabled CTX to be manufactured at large scale under cGMP conditions, ensuring sufficient supply to meets demands of research, clinical development and eventually the market. CTX has key pro-angiogenic, pro-neurogenic and immunomodulatory characteristics that are mechanistically important in functional recovery post stroke. This review covers the progress of CTX cell therapy from its laboratory origins to the clinic, concluding with a look in to the later stage clinical future.

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory to patients (DOI: 10.1089/scd.2017.0009) Stem Cells and Development

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

1. Introduction

1.1 Stem cells and stroke

The past decade has seen a rise in the number of stem cell-derived therapies targeting ischemic stroke in preclinical and early clinical studies. Corroborated by numerous scientific reports, the therapeutic benefits of stem cells include an extension of the time window for drug intervention, improvement of neurological deficits, reduction of infarct volume, pro-regenerative cerebral reorganization, mitigation of post-stroke neuro-inflammation and tissue restoration, all of which depend on the time after infarct, cell type used and route of administration [1-3]. The wide range of effects observed for stem cell therapies demonstrates that functional recovery after stroke occurs via multiple mechanisms rather than a single target [4-6]. Research indicates that the mode of action may depend on the stem cell type and other key factors including infarct size and location, mode of intervention and timing post stroke [6-8]. Thus, some understanding of the cellular, molecular, and biochemical events involved in the mode of action of a stem cell type is a prerequisite to improve and optimize its therapeutic benefits.

Our 2012 review of cell therapy in stroke showed the wide variety of cell types used preclinically and clinically in stroke treatment research [1]. Mesenchymal cells (MSCs) of multiple origin and phenotype are most commonly employed in the literature and mainly applied systemically in high doses in acute stroke settings, because of their non-engraftment and potent "drug-like" biological activity. Neural stem cells (NSCs), by contrast, are multipotent cells derived from developing or adult brain tissue or differentiated from pluripotent cells such as embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) in culture. These stem cells have both capacity for engraftment and neural cell differentiation as well as potent biological activity and are delivered intracerebrally in smaller volumes and cell doses, we believe more suitable in patients presenting with pre-existing chronic,

Stem Cells and Development

The final published version may differ from this proof.

accepted for publication, but has yet to undergo copyediting and proof correction.

and

neural

Human

paper has been peer-reviewed

This

stem cell therapy for chronic ischemic stroke: charting progress from laboratory

to patients (DOI: 10.1089/scd.2017.0009)

Stem Cells and Development for chronic ischemic stroke: charting progress from laboratory to patients (doi: 10.1089/scd.2017.0009) publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

stem cell therapy

Human neural This article has been peer-reviewed paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Stem Cells and Development

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

This

to patients (DOI: 10.1089/scd.2017.0009)

stable disability. There is a growing number of hNSC-derived therapies currently in preclinical development for ischemic stroke (see Table 1). Leading these therapies, ReNeuron's CTX0E03 cell line (CTX) has been evaluated in a first-in-human, single-center trial in patients with moderate to severe disability, 6 months to 5 years after ischemic stroke [9]. Currently a Phase II stroke trial in patients with upper limb disability, 3-12 months' post-stroke is underway across multiple sites in the UK (clinicaltrials.gov NCT02117635). In this review, we summarize nearly 15 years of research behind the CTX line and discuss its mode of action together with implications for therapeutic potential in stroke disability.

Table 1 about here

2. Technical development of hNSC therapy products for CNS indications

2.1 Cell transplantation

Progress in a cell therapy approach for CNS indications is dependent on product safety and efficacy and a manufacturing strategy to provide a product of consistent quality and supply to meet the demands of experimental and clinical research and the future commercial market. Early studies demonstrated that transplanted primary fetal neural cells can survive and exert positive effects in animal models of neurological indications including ischemic stroke damage [10-12]. Preclinical and clinical studies established anecdotal proof of concept data for their therapeutic efficacy and tested the surgical feasibility of safe CNS implantation. However, the use of primary cells from donated fetal brain tissue is impractical as a widely available therapeutic strategy. Procurement of tissues is limited by supply and the quality (i.e. purity and homogeneity of cells) is variable, producing inconsistent clinical results [13].

4

2.2 Use of neural stem cells

The use of human neural stem or neural progenitor cell lines is a practical alternative to primary cell implants for brain repair. Stem cells can be expanded in culture, with potential to deliver treatment at scale. Human neural stem cells (hNSCs) can be expanded in defined media supported by growth factors, such as epidermal growth factor (EGF) and fibroblast growth factor (FGF-2) and cultured as monolayers or free-floating neurospheres [14]. At the time of CTX's derivation, hNSCs were most efficiently isolated from fetal brain tissue. However, equivalent cell types can now be obtained from ESC and iPSC origins.

Some limitations for using hNSCs have surfaced, including their limited expandability in culture and issues related to genetic/phenotypic instability [15-17]. Neurospheres, for example, may contain mixed populations of stem cells and progenitors at differing stages of development, which may prevent the expansion of a homogenous cell line and limit their clinical potential [18]. In contrast, genetically immortalized NSCs, using genes for transcription factors such as Myc, have proved to be highly effective in extending the life span of hNSCs in vitro and maintaining a stable genotype and phenotype [19,20]. Long term cell expansion with associated karyotype stability is a feature of Myc immortalization [17,21]. Moreover, current reports indicate that the *myc* gene, may be a 'stemness' gene which drives rapid proliferation while maintaining multipotent capability of stem cells [22].

2.3 c-mycERTAM conditional immortalization technology

ReNeuron generated CTX a genetically stable, conditionally immortalized, clonal hNSC line, using its proprietary c-*myc*ER^{TAM} stem cell expansion technology (see Figure 1) [10,18,23]. CTX is genetically modified by insertion of a single copy of the c-*myc* gene fused with a modified murine estrogen receptor (ER) [18,23,24]. The transgene expresses a recombinant protein (c-MycER^{TAM}), which is present as an inactive monomer in the cytosol of the cell [24]. The activity of the recombinant

Stem Cells and Development

paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

This

Page 5 of 44

5

fusion protein is controlled exclusively by the addition of the 4-hydroxytamoxifen (4-OHT) to the cell culture media. 4-OHT binds to the modified receptor and causes the protein to dimerize. The protein dimer translocates to the nucleus where c-Myc acts as a transcription factor to maintain cell division in the presence of growth factors in the media. The c-Myc protein enables cell cloning and increased cell proliferation as well as extending stable growth of cells by upregulation of telomerase activity and other c-Myc targets. In the absence of 4-OHT and the mitogenic growth factors in the media, both in vitro and after cell implantation, the c-MycER^{TAM} fusion protein remains in the cytoplasm and is inactivated. Under these conditions, the cells undergo growth arrest and can differentiate into neurons and glial cells in vitro and in vivo [23]. The CTX cell line in culture remains dependent on mitogenic growth factors for significant proliferative capacity and the presence of 4-OHT to enhance cell growth to permit exponential proliferation. Telomerase activity, which supports karyotype stability across repeated cell doublings, is also 4-OHT dose-dependent [23]. In CTX in vitro, the c-MycER protein is gradually downregulated upon growth arrest and neural differentiation. The c-mycER gene is epigenetically silenced by methylation of the CPG islands of the promoter element of the construct, at least one week following cell implantation in stroke rats [25].

Figure 1 about here

2.4 CTX cell line generation, banking, and manufacturing of drug product

The CTX cell line was originally selected following in vitro and in vivo screening of several cell lines based on its stable NSC phenotype, survival and differentiation into relevant cell lineages in vivo [10,18,23]. The CTX cell line is clonal, expands rapidly in culture and has a normal karyotype [23]. The approach we have followed is to progress cell expansion/manufacturing through a cell banking process in line with procedures that have been used to manufacture biologicals such as recombinant proteins or antibodies [10]. This approach can allow a sustainable

Stem Cells and Development

stem cell therapy for chronic ischemic stroke: charting progress from laboratory

paper has been peer-reviewed

This

neural

Human

and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Page 6 of 44

6

supply of standardized material for preclinical safety studies and potentially all the way to marketing authorization. To achieve this goal, CTX cell lines were generated to make 'master' and 'working' cell banks of frozen vials of cells from which reproducible clinical lots of drug substance and drug product batches can be derived, as required. The resultant CTX "Drug Product" (CTX-DP) is composed of CTX cells at a passage of ≤37 [23]. Clinical release criteria include measures of sterility, purity (cell number, cell viability) and a number of other tests of identity, stability and potency required for clinical product release or for information as requested by regulatory authorities (see Table 2). The active DP is a fresh or frozen suspension of living cells formulated in a proprietary excipient (Hypothermosol FRS (Biolife Solutions, Bothell, WA)) suitable for intracranial administration using stereotaxic surgical techniques. CTX-DP may be stored at 4° to 25°C for extended periods (hours to days). Currently, the CTX clinical DP is an "off the shelf" cryopreserved product in a solvent-free excipient (US Patent 9265795) with a shelf life of many months.

Table 2 about here

Initiating the strategy of cell banking of the CTX cell line early in its developmental program has ensured that all pivotal preclinical safety and efficacy studies were conducted using the DP material equivalent to that used in ongoing or subsequent clinical trials. Importantly, CTX will not need to be re-derived, as sufficient vials are available at every level of the manufacturing process to enable potentially limitless manufacture. Robotic automation of the CTX manufacturing process has also been demonstrated [26], further validating the potential of this cell line to be efficiently and safely scaled at a reasonable cost of goods.

Stem Cells and Development

paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

This

final published version may differ from this proof.

The

accepted for publication, but has yet to undergo copyediting and proof correction.

paper has been peer-reviewed and

This

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

Stem Cells and Development

to patients (DOI: 10.1089/scd.2017.0009)

3. Preclinical studies of hNSCs in chronic ischemic stroke

For clinical translation of any cell therapy product, regulatory authorities require evidence of the rapeutic efficacy in animal models, together with extensive data to support product quality (cell characteristics and quality assurance regarding cells, their manipulation and manufacturing), and in vivo safety in acute and long term toxicology and tumorigenicity studies. Critical issues related to cellular therapeutic strategy, impacting patient selection (such as age, anatomic location and size of infarct), functional targets, timing of transplantation, dose of cells, site and route for delivery and requirement for immunosuppression, should be assessed in preclinical models wherever possible prior to clinical translation. The most widely used, characterized and validated animal model of ischemic stroke is the middle cerebral artery occlusion (MCAo) in the rat [27,28]. The MCAo lesion in this model demonstrates the same ischemic territory (i.e. basal ganglia and sensorimotor cortex) as the human brain following ischemic stroke. This animal model exhibits the same core functional deficits such as unilateral paresis, sensory dysfunction and visuospatial neglect. However, it does not reproduce the heterogeneity of human stroke. The MCAo model permits investigation of key aspects of stroke pathophysiology to examine potential therapeutic agents with minimal sample size. Its use and reproducibility across laboratories has accrued sufficient evidence of potential efficacy to justify clinical development.

3.1 Toxicology and in vivo safety

Standard toxicology designs, using functional observational batteries, hematology and necropsy endpoints, can be used to assess acute and long term product safety. Evaluation of exogenous cell survival, proliferation, migration, and differentiation of implanted cells is necessary for both tumorigenicity and biodistribution assessments. Full in vivo biodistribution analysis requires the use of validated stem cell-specific markers and methods, such as immunohistochemistry, in situ

Page 8 of 44

8

hybridization or quantitative PCR to detect implanted cells. These studies require pilot feasibility and validation studies and suitable controls to eliminate false positives. For tumorigenicity studies these methods are implemented to confirm the cellular origin of any forming tumors.

Stem cell-derived therapy products that are implanted, including hNSCs, require extensive safety testing. CTX safety has been evaluated across a battery of preclinical studies. Following intracerebral implantation of CTX in MCAo rats, non-human primates and NOD SCID mice, general safety was assessed by a functional observation battery of tests for up to 12 months. No CTX-related adverse events were reported in any of these studies. Both the cell dose and volume of implant were well tolerated in all studies conducted [ReNeuron Internal Report; [29]].

In terms of tumorigenicity, cell therapy products need thorough evaluation. Longterm safety evaluation requires investigation of tumorigenic potential in large cohorts of animals using the clinical route of administration. For these studies, it is usual to implant cells into immunodeficient strains of mice using large numbers to give the best chance of cell survival and to maximise the chance of tumor formation. The duration of studies will vary depending on the survival time of the cells, which can range from about 3 months for non-engrafting cell types to 12 months or longer for cells that survive well in vivo. For CTX long term survival required for in-life tumorigenicity studies was only achievable in the MCAo model. In this system CTX cells at 12 months' post implantation were not proliferative and showed no evidence of tumor formation. In addition, long term (9 months) treatment of CTX implanted MCAo animals with tamoxifen had no impact on CTX cell survival and proliferation, with no CTX-related reports of tumor formation [ReNeuron Internal Report; [29]].

paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Stem Cells and Development

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

This

Page 9 of 44

paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Stem Cells and Development

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

This

to patients (DOI: 10.1089/scd.2017.0009)

Neoplasm formation has never been observed with CTX cells across multiple preclinical studies. This information is nonetheless important in assessing the inherent risk of using a genetically modified cell line for clinical applications. Additionally, because of the presence of the c-*myc* gene and its single site retroviral insertion, further CTX implantation studies were undertaken to demonstrate c-*myc*ER gene transcript and protein down-regulation and epigenetic silencing in vivo as described above [25].

Studies in vitro have also confirmed that re-exposure of arowth arrested/differentiated cells to 4-OHT does not return differentiated CTX cells to a proliferative state [ReNeuron Internal Report; [29]]. Further, CTX cells do not proliferate when exposed to endogenous steroid hormones showing that activation of the c-mycER^{TAM} technology is specific for the 4-OHT ligand. Together, these data support the view that CTX is safe and does not present a tumor risk following implantation into the brain.

3.2 In vivo efficacy

A validated MCAo rat model of ischemic stroke was used for non-clinical CTX efficacy studies [30-32]. This model is well characterized in terms of sensorimotor and cognitive dysfunctions associated with region-specific stroke damage [28]. For CTX evaluation rats were transplanted 3-4 weeks' post-occlusion, permitting prior recovery from acute phase neurological dysfunction and establishment of steady-state sensorimotor deficits.

Three MCAo studies have demonstrated long-term improvements in sensorimotor function following intracerebral CTX implantation. In the first study, animals were treated with methylprednisolone for 2 weeks after cell administration and cyclosporine A for the duration of the study. Transplantation of CTX cells into the striatum in this study caused statistically significant improvements in both

Page 10 of 44

Stem Cells and Development for chronic ischemic stroke: charting progress from laboratory to patients (doi: 10.1089/scd.2017.0009) publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Human neural stem cell therapy This article has been peer-reviewed and accepted for

Stem Cells and Development

and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof to patients (DOI: 10.1089/scd.2017.0009) stem cell therapy for chronic ischemic stroke: charting progress from laboratory paper has been peer-reviewed neural Human This

10 sensorimotor function and gross motor asymmetry at 6-12 weeks post implantation [23]. In a second study, CTX delivered adjacent to the infarcted region demonstrated a cell dose-response effect [33]. Again, animals were treated with methylprednisolone and cyclosporine A; however, for this study, treatment was only given for the first 2 weeks after cell administration. Recovery in sensorimotor function deficits (bilateral asymmetry test in the mid- and high-dose groups and the rotameter test after amphetamine exposure in the high-dose group) were found in the CTX implanted groups compared with the vehicle group [33]. In-life functional improvements correlated with cell dose; however, there were no statistically significant correlations between surviving CTX cell numbers and test performances.

In the third study, intraparenchymal (but not intraventricular) implantation of CTX cells in the rat MCAo model improved sensorimotor dysfunction (bilateral asymmetry test) and motor deficits (foot-fault test, rotameter) [34]. Importantly, analyses based on lesion topology (striatal versus striatal plus cortical damage) revealed a significantly greater (approximately 80%) functional improvement in animals with a stroke confined to the striatum [34]. Cell survival 3 months' post-implant was positively correlated with infarct size, but there was no correlation between cell survival and motor improvement.

3.3 Key factors affecting neurological recovery and therapeutic efficacy

Brain environment alters dramatically and dynamically after the initial insult of stroke and presents in varying anatomical regions at any given time point. Therefore, the timing and mode of administration are of clinical relevance in terms of different types of cell therapies and mode of action. In the clinical scenario, early systemic delivery of cell therapy (within 36 hours after the stroke event) is aimed as a neuroprotective strategy to reduce the cascade of injury and limit brain tissue loss. But restoration of cerebral blood flow (CBF) beyond a critical time cannot rescue irreversibly damaged brain cells, which leads to long term disability

Page 11 of 44

Stem Cells and Development for chronic ischemic stroke: charting progress from laboratory to patients (doi: 10.1089/scd.2017.0009) publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Human neural stem cell therapy This article has been peer-reviewed and accepted for

Stem Cells and Development

paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof to patients (DOI: 10.1089/scd.2017.0009) Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory This

observed in stroke survivors. In this setting, cell therapy administered weeks, months and years post stroke targets the functional recovery of stable or deteriorating neural systems. This chronic stage is of interest to the majority of hNSC therapies currently in development (Table 1). During this period, the therapeutic opportunity is 'brain repair' including neurogenesis, angiogenesis, growth factor secretion, engraftment and cell differentiation [33,35-40].

The majority of hNSC experimental stroke studies have used stereotaxic intracerebral delivery in order to place the cells in close proximity to the lesion and increase their survival (Table 1) [23,25,33,34,36-39,41-45]. Hicks, et al. [37] determined time-related CTX cell survival in the striatum of naive mice following implantation and found that the substantial and rapid reduction of the implanted CTX cells by day 7 was due to apoptosis. In the MCAo model, CTX cells implanted 4 weeks' post lesion were observed in 37% (10/27) of the treated cohort at 12 weeks' post implantation using immunofluorescence methods. Cell survival was not influenced by dose concentration (22% (2/9) low-dose (4.5x10² cells), 56% (5/9) medium-dose (4.5×10^3 cells), and 33% (3/9) of high-dose animals (4.5×10^5 cells) in this study) [33]. In another MCAo study quantification of CTX survival at 1 and 4 weeks post implantation by Alu qPCR showed the presence of CTX cells in all grafted brains which ranged between 6.3% and 39.8% of the total cells administered [25]. These findings are consistent with other reports of the loss or short term survival of implanted hNSCs [40,42,46]. Further, a time course study following the fate of CTX cells post implantation into both ipsilateral and contralateral striatum of MCAo rats demonstrated a significant loss of implanted cells between 2 and 7 days' post implantation. At time points beyond 7 days and up to 6 months after implantation, CTX cells demonstrated better survival in the lesioned compared with the non-lesioned hemisphere [ReNeuron internal report].

12

3.4 Implantation site and lesion topology

The extent to which the site of implantation and host environment influence the fate of hNSCs after intracerebral transplantation also needs consideration. Appropriate placement of cells is an important factor that is of clinical relevance affecting therapeutic outcome. The post-stroke brain manifests specific microenvironments implantation that can influence efficacy. Two contrasting sites intracerebroventricular (ICV) and the peri-infarct environments - were compared for implantation efficacy [34]. The ICV environment is similar to the lesion environment as it contains cerebrospinal fluid (CSF) throughout. However, it lacks both a microvascular blood supply and extracellular matrix to support the integration and survival of implanted cells: an ICV injection of CTX cells did not result in any improvement. In contrast, the peri-infarct environment provides an extracellular matrix together with ischemia induced changes such as increased vasculature, neuronal loss and gliosis. When implanted into peri-infarct tissue, CTX cells survived and gradual improvements in sensorimotor dysfunctions (bilateral asymmetry test) and motor deficits (foot fault test and rotameter) were noted between 4 and 12 weeks' post implantation [34].

Lesion topology indicated that rats with stroke damage confined to the striatum recovered dysfunction to control levels following striatal CTX cell implantation. Animals with striatal lesions showed a more substantial improvement (83%) with CTX cell implantation, compared to animals with striatal and cortical lesions (48% improvement) [34].

4. Mechanisms of action of hNSCs in ischemic stroke

4.1 Cellular infarct reconstruction

An understanding of the cellular, molecular, and biochemical events involved in mechanisms of action of cell therapy is essential to improve and optimize its

Stem Cells and Development

accepted for publication, but has yet to undergo copyediting and proof correction.

paper has been peer-reviewed and

This

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

The final published version may differ from this proof

Page 13 of 44

paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Stem Cells and Development

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

This

to patients (DOI: 10.1089/scd.2017.0009)

therapeutic benefit. Two main NSC-based strategies for the mechanism of action have been explored in animal models. The first strategy is via the replacement of neurons to potentially reconstruct and repair the stroke damaged neural circuitry using intracerebral implanted NSCs or stimulation of neurogenesis through endogenous NSCs [47,48]. In the second strategy, NSCs upon delivery to the brain (intracerebral, intravenous (IV) or intra-arterial (IA)) act via paracrine mechanisms to promote immunomodulatory and, neuroprotective mechanisms, endogenous neurogenesis and angiogenesis [37,49]. A recent proposal of a "biobridge" by the Borlongan laboratory, using a Notch-modified mesenchymal stromal cell (MSC) line, links both strategies and suggests that the therapeutic benefit is derived via a combination of direct cell transplantation and changes to the microenvironment via paracrine actions of administered cells [50]. In models of traumatic brain injury, the administered cells aid in the creation of the biobridge using MMP-dense signals. Importantly, upon completion of the biobridge, the administered cells defer the repair process to endogenous neurogenic cells [51]. As the newly generated host cells replace the implanted cells, the implanted cells die, leaving only endogenous cells to maintain the bridge between the SVZ and the injured site [50]. The role of the biobridge in stroke models using intracerebrally implanted hNSCs warrants further investigation.

4.2 Possibility for direct cell replacement as a mechanism of repair

Direct cell replacement as a mechanism for repair post stroke has been to a degree discounted as therapeutic benefits cannot be attributed solely to implanted cell survival and/or differentiation [37,52]. As presented in section 3.3 above, studies using CTX have consistently reported variable incidence of cell survival (1% to 58%) following implantation. This variability may be accounted for by sampling limitations, the method used to detect and quantify the cells and the site and timing

13

Page 14 of 44

14

of administration post-occlusion. The peri-infarct environment has been shown to favor implanted cell survival over non-ischemic or infarct environments [34,45,53].

Stroemer, et al. [33] observed that the majority of the surviving CTX cells were found in or close to the intracranial injection site. Any migration of implanted cells was restricted to the lesioned striatum ipsilateral to implantation [33]. Studies using other hNSCs have also consistently reported cell migration to ischemic regions, following administration via various routes such as intracranial implantation [42], IV [54], or IA [55]. Intracerebrally implanted hNSCs were reported to have migrated up to 1.2mm in the lesioned hemispheres compared to 0.2mm in naive rat brain [45]. In another study delaying implantation (48 hours to 6 weeks after ischemic insult) did not affect the magnitude of migration, neuronal differentiation and proliferation of the implanted hNSCs [42]. Further, surviving hNSCs displayed a wide spectrum of fates ranging from 78% remaining in an immature state [41] weeks after implantation, to unquantified numbers of differentiated neurons forming synapses with host cells [56].

Characterization of CTX phenotype post intracerebral implantation showed expression of vascular specific markers, CD31, CD62, and Flt4, and the oligodendroglial marker, Olig2 in a small proportion of surviving CTX cells in the MCAo brain [33]. Smith, et al. [34], however, reported that 3 months after implantation into stroke brains, almost 20% of CTX cells were glial fibrillary acidic protein positive (GFAP+) astrocytes, and less than 2% expressed the neuronal marker, FOX3.

In summary, studies of implanted CTX have shown variable and limited long term survival rates in MCAo rats; of these, only a small percentage of implanted cells expressed neural markers [33,36]. These results do not support the hypothesis that

to patients (DOI: 10.1089/scd.2017.0009) Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory Stem Cells and Development

paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

This

Stem Cells and Development for chronic ischemic stroke: charting progress from laboratory to patients (doi: 10.1089/scd.2017.0009) publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Human neural stem cell therapy This article has been peer-reviewed and accepted for

Page 15 of 44

final published version may differ from this proof.

The

accepted for publication, but has yet to undergo copyediting and proof correction. for chronic ischemic stroke: charting progress from laboratory

stem cell therapy

neural

Human

and

paper has been peer-reviewed

This

Stem Cells and Development

to patients (DOI: 10.1089/scd.2017.0009)

stem cell therapeutic effects can be solely attributed to neuronal replacement and are consistent with data from other studies [4-6,38].

4.3 Host tissue responses

Following the implantation of CTX cells, there was a significant increase in cell proliferation in the host brains, which may have partly contributed to post-occlusion repair and protection of the penumbra and led to enhanced compensatory networks arising elsewhere [33,36]. The reason that implanted hNSCs generally increase endogenous neurogenesis may be due to the production of certain growth factors or repression of inflammation and apoptosis [57,58]. Human NSCs can express several neurotrophic factors including EGF, FGFs, glial cell line-derived neurotrophic factor 1 alpha (GDNF), sonic hedgehog (Shh), stromal cell-derived factor 1 alpha (SDF1-alpha) and VEGF [59-61]. Also, it has been shown that implanted hNSCs can repress the expression of caspase-3 and up-regulate the activity of heat shock protein 27 (HSP27) to reduce apoptosis [58]. These paracrine activities of NSCs provide a microenvironment that is more favorable to host cells and thus leads to proliferation of endogenous NSCs and suppression of apoptosis.

4.4 Immunomodulatory /Anti-inflammatory effect

The SVZ is an essential source of new cells in the developing brain and remnants of these zones are known to persist into adulthood. In the adult rodent brain, the SVZ contains proliferating progenitor cells and relatively quiescent neural stem cells [62]. Following MCAo, there is a significant decrease in the number of Ki67 positive cells in the SVZ, indicating a reduction in cell division and a likely reduction in neurogenesis and gliagenesis. Implantation of CTX into MCAo-lesion brains significantly restored host proliferation in the neurogenic SVZ [33]. These findings are in agreement with reports using other hNSCs [49,63]. Ekdahl, et al. [63] also attributed the decreased neurogenesis to inflammation; however, increased proliferation in the SVZ has also been noted at relatively early time points following

Page 16 of 44

16

injury in the adult brain [48,64,65]. The Stroemer et al. [33] study suggested that at 3 months' post stroke, an inflammatory mechanism may operate to suppress cell proliferation and that an anti-inflammatory influence may be exerted by CTX at an early stage post-implantation to counteract the effects of MCAo. Although the phenotype of the newly-born cells was not determined in that study; it is highly likely that these cells in the SVZ would have differentiated into neurons, astrocytes and oligodendrocytes [66]. Horie, et al. [67], using hNSCs from neurosphere cultures showed fewer ionizing calcium-binding adaptor molecule 1 (Iba-1) positive monocytes/macrophages 1-2 weeks' post implantation. Interestingly, this immunomodulatory effect was blocked by the anti-VEGF antibody Avastin, indicating that VEGF was important in hNSC immunomodulation.

Human MSCs have been shown to have a profound inhibitory effect on T-cell proliferation and cytotoxicity [68]. There is also evidence that hNSC modulation of macrophage/microglia and endothelial cells occurs in the ischemic lesion area [69]. The underlying mechanisms of the immunosuppressive effect of CTX and other hNSCs involve several soluble molecules such as nitric oxide, the enzyme indoleamine 2,3-dioxygenase (IDO), transforming growth factor- β 1 (TGF- β 1), hepatocyte growth factor (HGF), interleukin-(IL-)10, IL-6, and soluble human leukocyte antigen (HLA)-G5, and are only partly understood [70-72]. The enzyme IDO is also activated during inflammation and drives towards conditions that favor immune suppression and tolerance [73]. High levels of IDO protein in the brain have been linked to neurological disorders. Repression of IDO appears to improve these diseases. When CTX cells were treated with interferon-Y, they dramatically upregulated IDO mRNA and protein expression [74]. A group of naturally occurring flavonoid phytochemicals were found to potently repress the CTX-IDO activity, independently of gene expression and protein translation, suggesting a mechanism to attenuate the IDO activity without damaging the hNSCs.

final published version may differ from this proof.

The

yet to undergo copyediting and proof correction.

neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

accepted for publication, but has

been peer-reviewed and

paper has

This

Human

Stem Cells and Development

Page 17 of 44

In ischemic situations, there is a large increase in necrotic cells: their lysis and resulting content release leads to inflammatory macrophage (M1) responses (CD68+, CD80+, CCR7+) which are pro-inflammatory/tissue destructive and counterproductive in an ischemic injury repair setting [75]. In contrast, in general tissue homeostasis, the removal of apoptotic cells enables tissue remodelling and repair. It is believed that uptake of apoptotic cells leads to polarization of the macrophages towards the M2, CD63+/CD168+, anti-inflammatory, tissue constructive type which secrete cytokines such as IL-10, IL-4, IL-13 and prostaglandin E2 in the local environment and promote wound repair [75,76].

Post implantation, a substantial proportion of the CTX cells undergoes rapid apoptosis over a period of 24-72 hours with an exponential decline in cell numbers. In vivo, apoptotic cells are removed rapidly (within minutes) by tissue macrophages and bystander cells. Engulfment of apoptotic cells by macrophages promotes M2 polarization resulting in tissue repair and angiogenesis. Furthermore, anerobic conditions lead to hypoxia-inducible factor-1 (HIF-1) activation in macrophages. This, in combination with an M2 macrophage phenotype, up-regulates provascularization factors (e.g. PIGF, VEGF) and endothelial chemoattractants. In vitro studies indicate that addition of viable CTX cells to U937 cells in culture promote them to a M2 phenotype showing expression of CD206 and IL-10 release (see Figure 2).

Figure 2 about here

Therefore, it could be predicted that M2 polarization of macrophages, particularly in the presence of hypoxia in vivo, underlies an important component of the therapeutic benefit of injecting CTX cells directly into tissues.

paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Stem Cells and Development

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

This

Page 18 of 44

18

4.5 Microglia and stimulation of endogenous neurogenesis

The hypothesis that hNSC-mediated recovery in ischemic stroke conditions involves the neuroprotective action of microglial populations and the recruitment of a proliferative neuroblast population has gathered considerable support [36,43,77,78].

It has recently been shown in humans that neurogenesis arising from the SVZ is seen not only in olfactory bulb, but more prominently in striatal regions [79]. Hassani, et al. [36] reported evidence for a pool of endogenous proliferating cells in the rat striatum consisting of neuroblasts and microglial cells, which were generated in response to MCAo and implantation of CTX hNSCs. There was no effect of stroke on the ventral SVZ and although there was an effect of stroke on the presence of proliferating cells in the dorsal SVZ, there was no CTX effect in this There were changes to the proliferative population in the striatum in region. response to stroke which were enhanced by CTX implantation. CTX enhanced microglial responses at both 1 and 4 weeks' post CTX treatment in MCAo. In contrast, a significant increase in the presence of dividing neuroblasts was only afforded by CTX implantation in MCAo brain at 4 weeks' post implantation. These data suggest that the primary effect of CTX may be by modulation of the microglia response. It is possible that paracrine factors secreted by the microglia promote recruitment of dividing neuroblasts or have a neuroprotective action to support and maintain the neuroblast population and contribute to the therapeutic effect of CTX.

4.6 Evidence for angiogenesis, tubule formation and neovascularization

Angiogenesis contributes to the functional recovery of the ischemic region with increased collateral circulation to repair damaged vasculature [80,81]. Implanted CTX cells were also found to increase cerebral blood flow (CBF) on the lesioned side in MCAo-lesioned rats [82]. PET studies indicate that there is a significant ischemic penumbra in humans, and that reversibly ischemic tissue may persist for

Stem Cells and Development

accepted for publication, but has yet to undergo copyediting and proof correction.

paper has been peer-reviewed and

This

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

The final published version may differ from this proof.

much longer than initial experiments in animal models have suggested [83]. The functional recovery of the penumbra is the most clinically relevant target and successful treatment would be aided by a local increase in CBF with the restoration of transport of soluble factors to the site of injury.

Human NSCs release VEGF in vitro [84], known in vivo to restore CBF by promoting new blood vessel growth [85,86]. Previous studies which monitored blood flow in the lesioned hemisphere using laser Doppler measurements post-occlusion demonstrated a return of CBF to baseline levels 12-14 days after a transient MCAo and MSCs implantation [87]. However, Ulrich, et al. [88] followed CBF for 3 and 6 weeks after permanent MCAo and did not see a complete return to normal levels. Eve, et al. [82], after examining both hemispheres, noted a difference in CBF between the left and right sides and a shifting in direction in a visual oscillatory fashion over time in control, sham-occluded, rats. This change in normal animals. In occluded animals, the laser Doppler measurements of CBF showed consistent left side dominance. By 3 months after implantation, the CBF was observed to have improved in the lesioned hemisphere of the CTX-treated group compared with the untreated stroke rats and demonstrated a similar oscillatory nature as that seen in sham-occluded animals [82].

These findings support a regulated pro-angiogenic activity for CTX as one of its modes of action. Over the past years, several paracrine factors that play important roles in angiogenesis have been studied for their role in the angiogenic process, including VEGFA, basic FGF, and EGF [89,90]. Basic FGF and EGF promote angiogenesis by a direct effect on endothelial cells and indirectly by the upregulation of endothelial cell VEGFA [91]. VEGFA is an angiogenic growth factor, potent mitogen and survival factor specific to endothelial cells [92,93], which has also demonstrated neuroprotective effects against ischemic injury [94-98]. CTX

Human neural stem cell therapy This article has been peer-reviewed and accepted for accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof

neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

and

paper has been peer-reviewed

This

Human

Stem Cells and Development

to patients (DOI: 10.1089/scd.2017.0009)

Stem Cells and Development for chronic ischemic stroke: charting progress from laboratory to patients (doi: 10.1089/scd.2017.0009) publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

```
20
```

appears to perform a dual role in the promotion of angiogenesis in vitro: first, by the release of paracrine factors, (VEGFA, EGF, bFGF, ANGPT1, TGFb1, HIF-1a and ANGPT2); second, by direct physical cell interaction. In vitro, CTX treatment showed an increase in total tubule length formation compared with untreated controls [37].

In vivo, both MCAo and naive mouse brains demonstrated a clear increase in new host blood vessel formation with CTX implantation using immunohistochemistry analysis (an antibody raised against VWF, an endothelial cell marker) [37]. In addition, BrdU/CD31 labelling in naive mouse brain confirmed enhanced recruitment of proliferating endothelial progenitor cells and accelerated neo-vessel formation following CTX treatment. Human NSCs were found in precise association with blood vessels suggesting the establishment of a "neurovascular niche" [37]. Within this type of niche, it is proposed that neural progenitor cells lie in close proximity to endothelial cells to induce angiogenesis and neurogenesis. Furthermore, endothelial cells can secrete soluble factors that regulate neuronal differentiation [69,99-101]. Moreover, CTX may support this effect by the local delivery of growth factors, including VEGF. The study data demonstrated that angiogenesis and neurogenesis may be coupled processes similar to that observed in a co-culture system employing neural progenitors and activated endothelial cells [81]. CTX can interact with vascular endothelial cells specifically in areas of vascular remodelling, sprouting, and angiogenesis and ultimately aid repair (see Figure 3). These therapeutic benefits of CTX have also been demonstrated in ischemic muscles in the animal model of hind limb ischemia [102] and formed the basis for a UK clinical trial of CTX DP in lower limb peripheral arterial disease (NCT01916369), currently underway.

Figure 3 about here

Stem Cells and Development

paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

This

The final published version may differ from this proof.

paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction.

This

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

Stem Cells and Development

to patients (DOI: 10.1089/scd.2017.0009)

5. Recent clinical experience

Of the more than 50 stem cell trials in ischemic stroke registered on the clinicaltrials.gov database, only two are investigating hNSCs, both CTX. The CTX Pilot Investigation of Human Neural Stem Cells in Chronic Ischemic Stroke Patients (PISCES) Phase I (NCT01151124) has completed and the locked trial data to 2 years has been published [9]. A follow-on Phase II efficacy trial (NCT02117635) has now completed patient recruitment.

5.1 PISCES first-in human trial

Translation of CTX stem cell therapy from the laboratory to the first-in-human trial in the UK has been approached with caution and based on rigorous preclinical studies in rats with chronic stroke, which showed improvements in behavioral outcomes and indicated long term safety [33]. The PISCES trial was designed as an open dose-escalation study, in which men aged 60 years or older with stable chronic stroke received single doses of 2 million, 5 million, 10 million, or 20 million CTX-DP cells by stereotactic ipsilateral putamen injection [9]. The primary objective of the trial was to assess the safety and tolerability of intracerebral transplantation of CTX and second, to observe neurological and functional outcomes over the 24 months after treatment. There were no cell-related adverse events. Serious adverse events (SAEs) related to the procedure were noted from imaging in 4 of 11 patients, but none were symptomatic, a finding consistent with general safety data for brain stereotactic procedures [103,104]. No incidence of seizures was recorded, unlike previous trials in which teratocarcinoma-derived neuronal cells [105,106] and fetal porcine cells [107] were implanted to treat stroke.

The secondary endpoints monitored were exploratory indices of efficacy, using modified Rankin Scale (mRS), NIH stroke scale (NIHSS), Ashworth Scale for upper and lower limb spasticity and Barthel Index of activities of daily living (BI). After CTX-DP implantation, statistically significant improvements were seen over time in

Page 22 of 44

22

NIHSS, and non-significant improvements in summed arm and leg Ashworth scale and BI scores [9]. Disability, as measured by the mRS, at 12 months was unchanged in 7 of 11 patients and improved by one grade in four. At 24 months, disability was unchanged in 7 patients, worsened by two grades in one, and improved by one grade in three. Patient reported overall health status had improved by a median of 18 points (IQR –5 to 30) at 12 months compared with baseline. Functional magnetic resonance imaging (fMRI) data were also collected pre- and post-treatment to identify potential biomarkers of change in neurological function in the brains of the treated patients. Some longitudinal changes in motor activation fMRI were seen, consistent with the improvements in neurological measures.

Due to the small number of patients treated in the trial, their heterogeneity as a study population and the open label, single arm study design, it is not possible to draw reliable conclusions about the effects of CTX cell implantation on neurological or functional recovery. However, it was possible to note that despite selection of chronic, stable patients at late stages after stroke, most showed some improvement across several indices of function [9]. Whether attributable to cell implantation or to other factors, such as extra medical attention, change in this patient group suggests that trials of interventions are worthwhile late after stroke, when recovery is not generally believed to be attainable. The researchers also described anecdotal accounts of reduced spasticity, minor return of finger movement at phalangeal joints, and improved visual perception and better bed-to-chair transfers, which were supported by the changes in health-related quality of life, activities of daily living and neurological impairment [9].

In this first trial, only men were enrolled given the early nature of stem cell clinical research and the lack of reproductive toxicology outcomes for stem cells of any origin and in particular for CTX, in which a tamoxifen metabolite analogue receptor is used in vitro to control cell manufacture [25]. Subsequent studies, however, are

Stem Cells and Development for chronic ischemic stroke: charting progress from laboratory to patients (doi: 10.1089/scd.2017.0009) publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Human neural stem cell therapy This article has been peer-reviewed and accepted for

accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof

neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

paper has been peer-reviewed and

This

Human

Stem Cells and Development

Page 23 of 44

not limited to men as further preclinical studies did not show any tumor formation or increased CTX proliferation in male and female stroke rats chronically treated with tamoxifen.

Patients were not given immunosuppressive therapy because non-clinical studies with CTX showed no evidence that cell survival and efficacy required immunosuppression [33]. Additionally, in vitro studies for MHC class II (DR) and MHC class I (A, B, and C) showed low protein expression for CTX [9]. Further, immunosuppressive therapy heightens the risk of infection after stroke, which is independently associated with poor outcomes. The putamen was chosen as the site for implantation based on preclinical data which defined it as the closest intact subcortical neuronal cluster to the lesion and for its preference to white-matter, in which injections can cause further axonal injury related to increased pressure. We selected CTX-DP doses by scaling up from those that were efficacious in rats, and the ascending dose design (from 2 to 20 million cells) allowed cautious incremental increases after safety review. All patients received short and long term safety reviews and will be followed life-long for cancer.

In parallel, SanBio Inc in the US is undertaking a clinical development program with a *Notch-1* modified MSC line, SB623 in similar chronically disabled stroke patients. Recently, the Phase I outcomes from a US multicentre trial were reported [108] and showed similar improvements in NIHSS over time, with other measures employed in that study also showing some improvements. No SAEs were attributable to the cell therapy [109,110].

5.2 PISCES Phase II efficacy trial

Based on early demonstration of safety and feasibility in the Phase I trial, PISCES Phase II is following on, in order to assess the safety and efficacy of intracerebral CTX-DP in patients with paresis of an arm following an ischemic MCA stroke. The

Stem Cells and Development

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

and

paper has been peer-reviewed

This

accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Page 24 of 44

Stem Cells and Development for chronic ischemic stroke: charting progress from laboratory to patients (doi: 10.1089/scd.2017.0009) publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Human neural stem cell therapy This article has been peer-reviewed and accepted for

Stem Cells and Development

paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. to patients (DOI: 10.1089/scd.2017.0009) Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory This

trial design is a UK multi-center, open label, single arm, non-comparative design, administering a single dose of 20 million cells 3 months' post-ischemic stroke with follow-up over 12 months. Eligible patients, men or women aged 40 years or older, who have no useful function of the paretic arm for a minimum of 3 months to a maximum of 12 months after the ischemic stroke qualify to enrol into a minimum cohort of 21 patients. The design will determine if a sufficient proportion of patients experience recovery of function with CTX-DP at a dose level of 20 million cells (maximum dose from the Phase I) to justify a subsequent larger prospectively randomized efficacy study. Endpoint measures will include recovery of useful upper limb movement based on, for example, changes in the Action Research Arm Test (ARAT) [111], as well as established neurological and disability scales, such as NIHSS, a more objective version of mRS, Rankin Focused Assessment and BI at 3, 6 and 12 months' post treatment.

6. Future clinical aspects

The PISCES Phase I trial results demonstrated the feasibility of intracerebrally administered CTX-DP therapy and safety in elderly severely disabled men with chronic stroke. Due to its open trial design and the small number and heterogeneity of patients treated, it is not possible to draw reliable conclusion about the effects of hNSC therapy on neurological or functional recovery; although improvements were noted despite the selection of chronic, stable patients at late stages after stroke [9].

Phase II studies address methodologies and investigate biological evidence of activity to progress to pivotal trial data. The STEPS 3 guidelines recommend a Phase II study design which, along with standard measures of functional disability and activities of daily life, include domain-specific end points assessing the recovery of sensory, motor, visual, and cognitive functions using validated measures [112]. A desirable goal for a stroke disabled patient would be to achieve a level of functional independence that would enable them to return home and

24

Page 25 of 44

yet to undergo copyediting and proof correction. The final published version may differ from this proof

to patients (DOI: 10.1089/scd.2017.0009)

neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

accepted for publication, but has

paper has been peer-reviewed and

This

Human

Stem Cells and Development

reintegrate into community life as fully as possible. Hemiparesis and motor recovery have been the most studied of all stroke impairments, affecting as many as 88% of patients acutely post stroke. A systematic review of 58 studies confirms the most important predictive factor for upper limb recovery following stroke is the initial severity of motor impairment or function [113]. The prognosis for return of useful hand function is unfavorable when upper arm paralysis is complete at onset or grasp strength is not measurable by 4 weeks, with most recovery taking place in the first 3 months with little further recovery thereafter. This suggests that 3 months is the earliest time point for an invasive stem cell intervention.

The determination of clinical efficacy requires an appropriately designed and controlled study. However, appropriate controls for a randomized trial are likely to be a compromise in some respects. Historical controls are not valid, and concurrent controls who undergo only conventional medical and rehabilitation therapies are also sub-optimal, since they are not exposed to the invasive procedures and the potent placebo effect of "stem cell therapy" [114]. While essential scientifically, placebo (or 'sham') neurosurgery is of uncertain acceptability to patients, and the need for sham neurosurgery has been challenged by patient groups [115]. Patient acceptability of the design of a proposed trial is essential to ensure recruitment, and rigid adherence to conventional parallel-group randomized controlled trial designs is difficult at the early stages of efficacy testing, since patients who accept the risks of surgery and experimental treatment are frequently unwilling to consider the possibility that they will be randomly allocated to a placebo control group [116]. The reward-risk balance for neurosurgical administration may also necessitate the use of clinically (not just statistically) significant endpoints in a relatively small number of patients which poses a major challenge.

The ability to adjust for concomitant rehabilitation therapy in both active and control arms represents a difficulty in trial design. It is also possible that rehabilitation final published version may differ from this proof.

The

yet to undergo copyediting and proof correction.

1.

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

accepted for publication, but has

and

This paper has been peer-reviewed

Stem Cells and Development

to patients (DOI: 10.1089/scd.2017.0009)

26

training is a necessary facilitatory factor for regenerative effects of cell therapies to be seen, although animal models of non-specific physical therapies suggest that negative interactions are also possible. Implementation of standardized therapy as part of a clinical trial is difficult when dealing with what is traditionally a highly individualized and time-limited intervention that varies widely across healthcare systems.

Disclosure statement

JS, CH, PS and RC are employees of and stock and/or option holders in ReNeuron.

IV received financial support from ReNeuron for her assistance in drafting and preparing the manuscript for publication.

References

- Sinden JD, I Vishnubhatla and KW Muir. (2012). Prospects for stem cell-derived therapy in stroke. Prog Brain Res 201:119-67.
- Hermann DM and M Chopp. (2012). Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol 11:369-80.
- 3. Loubinoux I, B Demain, C Davoust, B Plas and L Vaysse. (2014). Stem cells and motor recovery after stroke. Ann Phys Rehabil Med 57:499-508.
- 4. Miljan EA and JD Sinden. (2009). Stem cell treatment of ischemic brain injury. Curr Opin Mol Ther 11:394-403.
- 5. Burns TC and CM Verfaillie. (2015). From mice to mind: Strategies and progress in translating neuroregeneration. Eur J Pharmacol 759:90-100.
- 6. Dulamea AO. (2015). The potential use of mesenchymal stem cells in stroke therapy--From bench to bedside. J Neurol Sci 352:1-11.
- 7. Ye X, J Hu and G Cui. (2016). Therapy Effects of Bone Marrow Stromal Cells on Ischemic Stroke. Oxid Med Cell Longev 2016:7682960.
- Hu J, B Liu, Q Zhao, P Jin, F Hua, Z Zhang, Y Liu, K Zan, G Cui and X Ye. (2016). Bone marrow stromal cells inhibits HMGB1-mediated inflammation after stroke in type 2 diabetic rats. Neuroscience 324:11-9.
- Kalladka D, J Sinden, K Pollock, C Haig, J McLean, W Smith, A McConnachie, C Santosh, PM Bath, L Dunn and KW Muir. (2016). Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. Lancet 388:787-96.
- 10. Pollock K and J Sinden. *Chapter 6. Progressing Neural Stem Cell Lines to the Clinic.* (2008). Springer Science + Business Media B.V.
- 11. Netto CA, H Hodges, JD Sinden, E LePeillet, T Kershaw, P Sowinski, BS Meldrum and JA Gray. (1993). Foetal grafts from hippocampal regio superior alleviate ischaemic-induced behavioural deficits. Behav Brain Res 58:107-12.

		27
	12.	Nunn J and H Hodges. (1994). Cognitive deficits induced by global cerebral ischaemia: relationship to brain damage and reversal by transplants. Behav Brain Res 65:1-31.
	13.	Olanow CW, CG Goetz, JH Kordower, AJ Stoessl, V Sossi, MF Brin, KM Shannon, GM Nauert, DP Perl, J Godbold and TB Freeman. (2003). A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol 54:403-14.
n this proof.	14.	Villa A, EY Snyder, A Vescovi and A Martinez-Serrano. (2000). Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp Neurol 161:67-84.
ay differ fror	15.	Wright LS, KR Prowse, K Wallace, MH Linskens and CN Svendsen. (2006). Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro. Exp Cell Res 312:2107-20
d version ma	16.	Donato R, EA Miljan, SJ Hines, S Aouabdi, K Pollock, S Patel, FA Edwards and JD Sinden. (2007). Differential development of neuronal physiological responsiveness in two human
ïnal publishe	17.	Villa A, B Navarro-Galve, C Bueno, S Franco, MA Blasco and A Martinez-Serrano. (2004). Long-term molecular and cellular stability of human neural stem cell lines. Exp Cell Res 294:559-70
ion. The f	18.	Hodges H, K Pollock, P Stroemer, S Patel, L Stevanato, I Reuter and J Sinden. (2007). Making stem cell lines suitable for transplantation. Cell Transplant 16:101-15.
of correct	19.	Dang CV, LM Resar, E Emison, S Kim, Q Li, JE Prescott, D Wonsey and K Zeller. (1999). Function of the c-Myc oncogenic transcription factor. Exp Cell Res 253:63-77.
and proc	20.	Kim SU. (2004). Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology 24:159-71.
go copyediting	21.	Li Z, D Oganesyan, R Mooney, X Rong, MJ Christensen, D Shahmanyan, PM Perrigue, J Benetatos, L Tsaturyan, S Aramburo, AJ Annala, Y Lu, J Najbauer, X Wu, ME Barish, DL Brody, KS Aboody and M Gutova. (2016). L-MYC Expression Maintains Self-Renewal and Prolongs Multipotency of Primary Human Neural Stem Cells. Stem Cell Reports 7:483-95.
to under	22.	Takahashi K and S Yamanaka. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-76.
ı, but has yet	23.	Pollock K, P Stroemer, S Patel, L Stevanato, A Hope, E Miljan, Z Dong, H Hodges, J Price and JD Sinden. (2006). A conditionally immortal clonal stem cell line from human cortical neuroepithelium for the treatment of ischemic stroke. Exp Neurol 199:143-55.
r publication	24.	Littlewood TD, DC Hancock, PS Danielian, MG Parker and GI Evan. (1995). A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 23:1686-90.
l accepted fo	25.	Stevanato L, RL Corteling, P Stroemer, A Hope, J Heward, EA Miljan and JD Sinden. (2009). c-MycERTAM transgene silencing in a genetically modified human neural stem cell line implanted into MCAo rodent brain. BMC Neurosci 10:86.
reviewed and	26.	Thomas RJ, AD Hope, P Hourd, M Baradez, EA Miljan, JD Sinden and DJ Williams. (2009). Automated, serum-free production of CTX0E03: a therapeutic clinical grade human neural stem cell line. Biotechnol Lett 31:1167-72.
is been peer-	27.	Modo M, RP Stroemer, E Tang, T Veizovic, P Sowniski and H Hodges. (2000). Neurological sequelae and long-term behavioural assessment of rats with transient middle cerebral artery occlusion. J Neurosci Methods 104:99-109.
s paper hi	28.	Schallert T. (2006). Behavioral tests for preclinical intervention assessment. NeuroRx 3:497-504.
Thi	29.	Muir KW and JD Sinden. (2015). The CTX human neural stem cell line and the PISCES stroke trial. In: <i>Cell therapy for brain injury</i> . Hess DC ed. Springer. pp 111–28.
	20	

30. Laing RJ, J Jakubowski and RW Laing. (1993). Middle cerebral artery occlusion without craniectomy in rats. Which method works best? Stroke 24:294-7; discussion 297-8.

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory to patients (DOI: 10.1089/scd.2017.0009)

Stem Cells and Development

2	o
	ō

		28
	31.	Virley D. (2005). Choice, methodology, and characterization of focal ischemic stroke
		models: the search for clinical relevance. Methods Mol Med 104:19-48.
	32.	Longa EZ, PR Weinstein, S Carlson and R Cummins. (1989). Reversible middle cerebral
		artery occlusion without craniectomy in rats. Stroke 20:84-91.
	33.	Stroemer P, S Patel, A Hope, C Oliveira, K Pollock and J Sinden. (2009). The neural stem cell
rool		line CTX0E03 promotes behavioral recovery and endogenous neurogenesis after
his p		experimental stroke in a dose-dependent fashion. Neurorehabil Neural Repair 23:895-909.
om t	34.	Smith EJ, RP Stroemer, N Gorenkova, M Nakajima, WR Crum, E Tang, L Stevanato, JD
er fr		Sinden and M Modo. (2012). Implantation site and lesion topology determine efficacy of a
diff		human neural stem cell line in a rat model of chronic stroke. Stem Cells 30:785-96.
may	35.	Bliss T, R Guzman, M Daadi and GK Steinberg. (2007). Cell transplantation therapy for
ion		stroke. Stroke 38:817-26.
vers	36.	Hassani Z, J O'Reilly, Y Pearse, P Stroemer, E Tang, J Sinden, J Price and S Thuret. (2012).
shed		Human neural progenitor cell engraftment increases neurogenesis and microglial
ublis		recruitment in the brain of rats with stroke. PLoS One 7:e50444.
al p	37.	Hicks C, L Stevanato, RP Stroemer, E Tang, S Richardson and JD Sinden. (2013). In vivo and
le fir		in vitro characterization of the angiogenic effect of CTX0E03 human neural stem cells. Cell
Ŀ.	20	Iransplant 22:1541-52.
ctio	38.	Ryu S, SH Lee, SO Kim and BW Yoon. (2016). Human neural stem cells promote
orre		promeration of endogenous neural stem cens and enhance angiogenesis in ischemic rat
oof (30	Jian K I Xie X Mao MB Greenberg A Moore B Beng BB Greenberg and DA Greenberg
ıd pr	55.	(2011) Effect of human neural precursor cell transplantation on endogenous neurogenesis
ıg ar		after focal cerebral ischemia in the rat. Brain Res 1374:56-62
ditir	40	Darsalia V. SI Allison, C. Cusulin, F. Monni, D. Kuzdas, T. Kallur, O. Lindvall and Z. Kokaja
opye	101	(2011) Cell number and timing of transplantation determine survival of human neural
50 C		stem cell grafts in stroke-damaged rat brain. J Cereb Blood Flow Metab 31:235-42.
nder	41.	Andres RH. N Horie. W Slikker. H Keren-Gill. K Zhan. G Sun. NC Manley. MP Pereira. LA
to ui		Sheikh, EL McMillan, BT Schaar, CN Svendsen, TM Bliss and GK Steinberg. (2011). Human
yet		neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain.
t has		Brain 134:1777-89.
ı, bu	42.	Darsalia V, T Kallur and Z Kokaia. (2007). Survival, migration and neuronal differentiation of
atio		human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum.
ıblic		Eur J Neurosci 26:605-14.
or pu	43.	Daadi MM, AS Davis, A Arac, Z Li, AL Maag, R Bhatnagar, K Jiang, G Sun, JC Wu and GK
ted f		Steinberg. (2010). Human neural stem cell grafts modify microglial response and enhance
cept		axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke 41:516-23.
nd ac	44.	Mine Y, J Tatarishvili, K Oki, E Monni, Z Kokaia and O Lindvall. (2013). Grafted human
ed ar		neural stem cells enhance several steps of endogenous neurogenesis and improve
iewa		behavioral recovery after middle cerebral artery occlusion in rats. Neurobiol Dis 52:191-
r-rev		203.
pee	45.	Kelly S, TM Bliss, AK Shah, GH Sun, M Ma, WC Foo, J Masel, MA Yenari, IL Weissman, N
oeen		Uchida, T Palmer and GK Steinberg. (2004). Transplanted human fetal neural stem cells
has l		survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A
per]		101:11839-44.
is pâ	46.	HICKS AU, RS Lappalainen, S Narkilahti, R Suuronen, D Corbett, J Sivenius, O Hovatta and J
μŢ		JOIKKONEN. (2009). Transplantation of human embryonic stem cell-derived neural precursor
		cells and enficined environment after cortical stroke in rats: cell survival and functional
		ielovely. Eul j Neulosli 29.302-74.

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory to patients (DOI: 10.1089/scd.2017.0009) Stem Cells and Development

		29
	47.	Park DH, DJ Eve, PR Sanberg, J Musso, 3rd, AD Bachstetter, A Wolfson, A Schlunk, MO Baradez, JD Sinden and C Gemma. (2010). Increased neuronal proliferation in the dentate
	48.	Arvidsson A, T Collin, D Kirik, Z Kokaia and O Lindvall. (2002). Neuronal replacement from
n this proof.	49.	2hang P, J Li, Y Liu, X Chen, H Lu, Q Kang, W Li and M Gao. (2011). Human embryonic neural stem cell transplantation increases subventricular zone cell proliferation and promotes peri-infarct angiogenesis after focal cerebral ischemia. Neuronathology 31:384-91
liffer fror	50.	Sullivan R, K Duncan, T Dailey, Y Kaneko, N Tajiri and CV Borlongan. (2015). A possible new focus for stroke treatment - migrating stem cells. Expert Opin Biol Ther 15:949-58.
d version may d	51.	Tajiri N, Y Kaneko, K Shinozuka, H Ishikawa, E Yankee, M McGrogan, C Case and CV Borlongan. (2013). Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site. PLoS One 8:e74857
publishe	52.	Gnecchi M, Z Zhang, A Ni and VJ Dzau. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204-19
rection. The final	53.	Bliss TM, S Kelly, AK Shah, WC Foo, P Kohli, C Stokes, GH Sun, M Ma, J Masel, SR Kleppner, T Schallert, T Palmer and GK Steinberg. (2006). Transplantation of hNT neurons into the ischemic cortex: cell survival and effect on sensorimotor behavior. J Neurosci Res 83:1004-14.
and proof cor	54.	Chu K, M Kim, KI Park, SW Jeong, HK Park, KH Jung, ST Lee, L Kang, K Lee, DK Park, SU Kim and JK Roh. (2004). Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res 1016:145-53.
go copyediting	55.	Jiang Q, ZG Zhang, GL Ding, B Silver, L Zhang, H Meng, M Lu, DS Pourabdillah-Nejed, L Wang, S Savant-Bhonsale, L Li, H Bagher-Ebadian, J Hu, AS Arbab, P Vanguri, JR Ewing, KA Ledbetter and M Chopp. (2006). MRI detects white matter reorganization after neural progenitor cell treatment of stroke. Neuroimage 32:1080-9.
yet to under	56.	Daadi MM, Z Li, A Arac, BA Grueter, M Sofilos, RC Malenka, JC Wu and GK Steinberg. (2009). Molecular and magnetic resonance imaging of human embryonic stem cell-derived neural stem cell grafts in ischemic rat brain. Mol Ther 17:1282-91.
, but has	57.	Locatelli F, A Bersano, E Ballabio, S Lanfranconi, D Papadimitriou, S Strazzer, N Bresolin, GP Comi and S Corti. (2009). Stem cell therapy in stroke. Cell Mol Life Sci 66:757-72.
r publication	58.	Shen CC, CH Lin, YC Yang, MT Chiao, WY Cheng and JL Ko. (2010). Intravenous implanted neural stem cells migrate to injury site, reduce infarct volume, and improve behavior after cerebral ischemia. Curr Neurovasc Res 7:167-79.
l accepted fo	59.	Madhavan L, BF Daley, KL Paumier and TJ Collier. (2009). Transplantation of subventricular zone neural precursors induces an endogenous precursor cell response in a rat model of Parkinson's disease. J Comp Neurol 515:102-15.
reviewed and	60.	Maurer MH, WK Tripps, RE Feldmann, Jr. and W Kuschinsky. (2003). Expression of vascular endothelial growth factor and its receptors in rat neural stem cells. Neurosci Lett 344:165-8.
en peer-	61.	Kalyani AJ, T Mujtaba and MS Rao. (1999). Expression of EGF receptor and FGF receptor isoforms during neuroepithelial stem cell differentiation. J Neurobiol 38:207-24.
paper has be	62.	Morshead CM, BA Reynolds, CG Craig, MW McBurney, WA Staines, D Morassutti, S Weiss and D van der Kooy. (1994). Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071-82.
This	63.	Ekdahl CT, JH Claasen, S Bonde, Z Kokaia and O Lindvall. (2003). Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 100:13632-7.
	64.	Parent JM, ZS Vexler, C Gong, N Derugin and DM Ferriero. (2002). Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52:802-13.

20

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory to patients (DOI: 10.1089/scd.2017.0009) Stem Cells and Development

		50
	65.	Zhang RL, ZG Zhang, Y Wang, Y LeTourneau, XS Liu, X Zhang, SR Gregg, L Wang and M Chopp. (2007). Stroke induces ependymal cell transformation into radial glia in the
		subventricular zone of the adult rodent brain. J Cereb Blood Flow Metab 27:1201-12.
	66.	Garcia-Verdugo JM, F Doetsch, H Wichterle, DA Lim and A Alvarez-Buylla. (1998).
Ŀ.		Architecture and cell types of the adult subventricular zone: in search of the stem cells. J
roo		Neurobiol 36:234-48.
uis p	67.	Horie N, MP Pereira, K Niizuma, G Sun, H Keren-Gill, A Encarnacion, M Shamloo, SA
m th		Hamilton, K Jiang, S Huhn, TD Palmer, TM Bliss and GK Steinberg. (2011). Transplanted
fro		stem cell-secreted vascular endothelial growth factor effects poststroke recovery.
ffer		inflammation and vascular renair. Stem Cells 29:274-85
y di	69	Aggarwal S and ME Dittonger (2005). Human mesonshymal stom colls modulate allogeneis
n ma	08.	immune cell responses. Plood 10E:191E 22
sior	60	Infiniture cell responses. Blood 103.1813-22.
ver	69.	Shen Q, SK Goderie, L Jin, N Karanth, Y Sun, N Abramova, P Vincent, K Pumiglia and S
shed		Temple. (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural
ildı		stem cells. Science 304:1338-40.
al pi	70.	Chen TS, F Arslan, Y Yin, SS Tan, RC Lai, AB Choo, J Padmanabhan, CN Lee, DP de Kleijn and
fin		SK Lim. (2011). Enabling a robust scalable manufacturing process for therapeutic exosomes
The		through oncogenic immortalization of human ESC-derived MSCs. J Transl Med 9:47.
ion.	71.	Shieh DE, LT Liu and CC Lin. (2000). Antioxidant and free radical scavenging effects of
rect		baicalein, baicalin and wogonin. Anticancer Res 20:2861-5.
cor	72.	Perez CA, Y Wei and M Guo. (2009). Iron-binding and anti-Fenton properties of baicalein
roof		and baicalin. J Inorg Biochem 103:326-32.
d pr	73	Munn DH and AL Mellor (2013) Indoleamine 2.3 dioxygenase and metabolic control of
ıg aı		immune responses. Trends Immunol 34:137-43
ditir	74	Chen S. R. Corteling, J. Stevanato and J. Sinden (2012). Natural inhibitors of indoleamine 3.5-
pye	, 4.	dioxygenase induced by interferon-gamma in human neural stem cells. Biochem Biophys
0 00		Boc Commun 420:117-22
derg	75	Nes Commun 425.117-25.
un c	75.	chinal cord iniury. Not Day Neurosci 12:229,00
et to	70	spinal cord injury. Nat Rev Neurosci 12:388-99.
as y	76.	Mantovani A, A Sica and M Locati. (2007). New vistas on macrophage differentiation and
out h		activation. Eur J Immunol 37:14-6.
on, t	77.	Capone C, S Frigerio, S Fumagalli, M Gelati, MC Principato, C Storini, M Montinaro, R
catio		Kraftsik, M De Curtis, E Parati and MG De Simoni. (2007). Neurosphere-derived cells exert a
ubli		neuroprotective action by changing the ischemic microenvironment. PLoS One 2:e373.
or p	78.	Lalancette-Hebert M, G Gowing, A Simard, YC Weng and J Kriz. (2007). Selective ablation of
ed f		proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27:2596-
cept		605.
d ac	79.	Ernst A, K Alkass, S Bernard, M Salehpour, S Perl, J Tisdale, G Possnert, H Druid and J Frisen.
lan		(2014). Neurogenesis in the striatum of the adult human brain. Cell 156:1072-83.
wec	80.	Arenillas JF. T Sobrino. J Castillo and A Davalos. (2007). The role of angiogenesis in damage
evie		and recovery from ischemic stroke. Curr Treat Options Cardiovasc Med 9:205-12.
er-1	81	Slevin M. L.Kruninski, I.Gaffney, S.Matou, D.West, H.Delisser, RC Savani and S.Kumar
n pe	01.	(2007) Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and
bee		CD// recentor signaling nathways Matrix Biol 26:58-68
has	07	Evo DL L Musso 2rd DH Dark C Olivoira K Dollock A Hono MO Paradoz ID Sindon and DP
aper	02.	Eve DJ, J Musso, STU, DT Fark, C Oliveira, K Foliock, A hope, MO Barauez, JD Sinder and FK
uis p		Samperg. (2009). Methodological study investigating long term laser Doppler measured
Ē		cerebral blood flow changes in a permanently occluded rat stroke model. J Neurosci
	83.	Markus R, G Donnan, S Kazui, S Kead and D Reutens. (2004). Penumbral topography in
		human stroke: methodology and validation of the 'Penumbragram'. Neuroimage 21:1252-
		9.

Stem Cells and Development Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory to patients (doi: 10.1089/scd.2017.0009) This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory to patients (DOI: 10.1089/scd.2017.0009) Stem Cells and Development

30

ц Ц			
n this		84.	Eve DJ, IJ Musso, VH Bui, AJ Smith, C Gemma, DF Cameron, C Oliveira, K Pollock, A Hope,
ron			cells Cell Transplant 17:464–5
fer f		85.	Li Y, Z Lu, CL Keogh, SP Yu and L Wei. (2007). Erythropoietin-induced neurovascular
09) y dif	of.		protection, angiogenesis, and cerebral blood flow restoration after focal ischemia in mice. J
.00 ma	s pro	86	CERED BIOOD FIOW METAD 27:1043-54. Mathe 7 P Dupraz C Rinsch B Thorens, D Rosco, M Zhinden, P Morel, T Rerney and MS
sion	n thi	00.	Pepper. (2006). Tetracycline-regulated expression of VEGF-A in beta cells induces
cd.2 ver	r froi		angiogenesis: improvement of engraftment following transplantation. Cell Transplant
89/s hed)9) diffe		15:621-36.
blis blis	7.000 may	87.	Borlongan CV, JG Lind, O Dillon-Carter, G Yu, M Hadman, C Cheng, J Carroll and DC Hess.
l: 10 I pu	1.201 ersion		(2004). Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Res 1010:108-16
(doi fina	89/sco led ve	88.	Ulrich PT, S Kroppenstedt, A Heimann and O Kempski. (1998). Laser-Doppler scanning of
Ine	0.108 ıblish		local cerebral blood flow and reserve capacity and testing of motor and memory functions
oatie	OI: 1 nal pu		in a chronic 2-vessel occlusion model in rats. Stroke 29:2412-20.
to I ection	tts (D he fiir	89.	Diaz-Flores L, R Gutierrez and H Varela. (1994). Angiogenesis: an update. Histol Histopathol
tory	on. T	90.	5.807-45. Folkman J and M Klagsbrun. (1987). Angiogenic factors. Science 235:442-7.
oora	y to p rrecti	91.	Kawasuji M, H Nagamine, M Ikeda, N Sakakibara, H Takemura, S Fujii and Y Watanabe.
l pro	rrator of cor		(2000). Therapeutic angiogenesis with intramyocardial administration of basic fibroblast
anc	ı labo İ proc		growth factor. Ann Thorac Surg 69:1155-61.
ting ting	ment from g and	92.	Gerber HP, A McMurtrey, J Kowalski, M Yan, BA Keyt, V Dixit and N Ferrara. (1998).
yedi yedi	velop gress editir		phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR
cop.	d Dev g pro copy		activation. J Biol Chem 273:30336-43.
rgo rgo	ls an nartin ergo	93.	Lu J, VJ Pompili and H Das. (2013). Neovascularization and hematopoietic stem cells. Cell
nde	n Cel ke: ch	04	Biochem Biophys 67:235-45.
ton	Ster c stro	54.	of vascular endothelial growth factor on cerebral blood flow, edema, and infarct volume.
yet sti	hemic tt has		Acta Neurochir (Wien) 145:49-53.
emi has	ic iscl on, bu	95.	Hayashi T, K Abe and Y Itoyama. (1998). Reduction of ischemic damage by application of
isch but	chron		vascular endothelial growth factor in rat brain after transient ischemia. J Cereb Blood Flow
inic ion,	for 6	96.	Kava D. Y Gursov-Ozdemir. M Yemisci. N Tuncer. S Aktan and T Dalkara. (2005). VEGF
chro	erapy ed fo		protects brain against focal ischemia without increasing bloodbrain permeability when
pub	ell th ccept		administered intracerebroventricularly. J Cereb Blood Flow Metab 25:1111-8.
apy for	tem c and a	97.	Sun Y, K Jin, L Xie, J Childs, XO Mao, A Logvinova and DA Greenberg. (2003). VEGF-induced
ther	ural s wed a		111.1843-51
ccell 1	un neu revie	98.	Zhang ZG, L Zhang, Q Jiang, R Zhang, K Davies, C Powers, N Bruggen and M Chopp. (2000).
em c	Huma peer-		VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic
ul ste sd an] been	00	brain. J Clin Invest 106:829-38.
ewe	r has	99.	Alvarez-Buylla A and DA Lim. (2004). For the long run: maintaining germinal niches in the adult brain. Neuron 41:683-6
an n revi	papeı	100.	Ohab JJ, S Fleming, A Blesch and ST Carmichael. (2006). A neurovascular niche for
lum: eer-	This		neurogenesis after stroke. J Neurosci 26:13007-16.
d uə		101.	Wurmser AE, TD Palmer and FH Gage. (2004). Neuroscience. Cellular interactions in the
s be		102	stem cell niche. Science 304:1253-5.
ha:		102.	Sinden and P Madeddu. (2014). Clinical-grade human neural stem cells promote reparative
ticlé			
is ar			
Thi			

roof

Stem Cells and Development

Page 32 of 44

published version may differ from this proof. Stem Cells and Development Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory to patients (doi: 10.1089/scd.2017.0009) This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may c

Stem Cells and Development

The final published version may differ from this proof. 104. Muir KW, J Sinden, E Miljan and L Dunn. (2011). Intracranial delivery of stem cells. Transl Stroke Res 2:266-71. 105. Kondziolka D, GK Steinberg, L Wechsler, CC Meltzer, E Elder, J Gebel, S Decesare, T Jovin, R Zafonte, J Lebowitz, JC Flickinger, D Tong, MP Marks, C Jamieson, D Luu, T Bell-Stephens and J Teraoka. (2005). Neurotransplantation for patients with subcortical motor stroke: a to patients (DOI: 10.1089/scd.2017.0009) phase 2 randomized trial. J Neurosurg 103:38-45. 106. Kondziolka D, L Wechsler, S Goldstein, C Meltzer, KR Thulborn, J Gebel, P Jannetta, S DeCesare, EM Elder, M McGrogan, MA Reitman and L Bynum. (2000). Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55:565-9. 107. Savitz SI, J Dinsmore, J Wu, GV Henderson, P Stieg and LR Caplan. (2005). Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc Dis 20:101-7. 108. Steinberg GK, D Kondziolka, LR Wechsler, LD Lunsford, ML Coburn, JB Billigen, AS Kim, JN paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. Johnson, D Bates, B King, C Case, M McGrogan, EW Yankee and NE Schwartz. (2016). Clinical Outcomes of Transplanted Modified Bone Marrow-Derived Mesenchymal Stem Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory Cells in Stroke: A Phase 1/2a Study. Stroke 47:1817-24. Borlongan CV. (2016). Preliminary Reports of Stereotaxic Stem Cell Transplants in Chronic 109. Stroke Patients. Mol Ther 24:1710-1711. 110. Borlongan CV. (2016). Age of PISCES: stem-cell clinical trials in stroke. Lancet 388:736-8. 111. Yozbatiran N, L Der-Yeghiaian and SC Cramer. (2008). A standardized approach to performing the action research arm test. Neurorehabil Neural Repair 22:78-90. 112. Savitz SI, SC Cramer, L Wechsler and S Consortium. (2014). Stem cells as an emerging paradigm in stroke 3: enhancing the development of clinical trials. Stroke 45:634-9. Coupar F, A Pollock, P Rowe, C Weir and P Langhorne. (2012). Predictors of upper limb 113. recovery after stroke: a systematic review and meta-analysis. Clin Rehabil 26:291-313. 114. Diederich NJ and CG Goetz. (2008). The placebo treatments in neurosciences: New insights from clinical and neuroimaging studies. Neurology 71:677-84. 115. Cohen PD, T Isaacs, P Willocks, L Herman, J Stamford, S Riggare and P Wittekind. (2012). Sham neurosurgical procedures: the patients' perspective. The Lancet Neurology 11:1022. 116. George AJT, C Collett, AJ Carr, S Holm, C Bale, S Burton, M Campbell, A Coles, G Gottlieb, K Muir, S Parroy, J Price, ASC Rice, J Sinden, C Stephenson, K Wartolowska and H Whittall. (2016). When should placebo surgery as a control in clinical trials be carried out? . Royal Coll Surg Bull 98:4. 117. Jin K, X Mao, L Xie, V Galvan, B Lai, Y Wang, O Gorostiza, X Wang and DA Greenberg. (2010). Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J Cereb Blood Flow Metab 30:534-44. 118. Jin K, X Mao, L Xie, RB Greenberg, B Peng, A Moore, MB Greenberg and DA Greenberg. (2010). Delayed transplantation of human neural precursor cells improves outcome from focal cerebral ischemia in aged rats. Aging Cell 9:1076-83. This Table 1 Examples of human neural stem cell lines in preclinical models of ischemic

stroke, their reported modes of action and behavioral endpoints observed

neovascularization in mouse models of hindlimb ischemia. Arterioscler Thromb Vasc Biol

Favre J, JM Taha and KJ Burchiel. (2002). An analysis of the respective risks of hematoma formation in 361 consecutive morphological and functional stereotactic procedures.

34:408-18.

Neurosurgery 50:48-56; discussion 56-7.

103.

32

Source of	Administration	Putative modes of	Effects on behavioral
hNSCs	of cell therapy	action	outcomes (MCAo rat
	(Timing/ / Mode		model)
	/ Site)		
Conditionally immortalized fetal cortical cell line product CTX [23,25,33,34,37]	4 weeks' post MCAo / IC / ipsilateral peri- infarct (right putamen)	Some engraftment and mainly astrocyte differentiation Paracrine effect: secretion of paracrine factors, such as vascular endothelial growth factor (VEGF); Enhanced angiogenesis: improvement in CBF, new blood vessels formation Enhanced neurogenesis Immunomodulation; microglial effect; anti- inflammatory	Significant improvement: • Bilateral asymmetry test [23,33,34] • Rotameter test [23,33,34] • Foot fault test [34] No effect: • Whiskers reflex [33] • Water maze test [34]
Immortalized	24 hours' post	Reduced infarct	Significant
human fetal NSC	MCAo / IC / SVZ	volume	improvement:
line HB1.F3 [38]		Activated proliferation and differentiation of	Neurologic

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

2	Λ
	4

			34
		endogenous	Severity Score
		neurogenesis to	[38]
		produce mature	
		neuron-like cells	
		Enhanced	
		angiogenesis	
Human cortical	7 days' post	Increases dendritic	Significant
NPCs [41,67]	MCAo / IC /	plasticity in both the	improvement:
	ipsilateral cortex	ipsi- and contralesional	 Vibraissae-
	[45]	cortex 3-5 weeks' post	elicited forelimb
	[]	implantation	placing test [41]
			Cylinder test
		Increased	[41]
		corticocortical,	Postural reflex
		corticostriatal,	test [41]
		corticothalamic and	
		corticospinal axonal	• whiskers
		rewiring from the	stimulation test
		contralesional side;	[67]
		with the transcallosal	No effect:
		and corticospinal	Elevated body
		axonal sprouting	swing test [41]
		Rescued avonal	
		transport, which is	
		critical for both proper	
		axonal function and	
		axonal sprouting	
		Identified VEGF,	

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory to patients (DOI: 10.1089/scd.2017.0009)

Stem Cells and Development

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory to patients (DOI: 10.1089/scd.2017.0009) Stem Cells and Development

				35
		thrombospondins 1		
		and 2, and slit as		
		mediators partially		
		responsible for stem		
		cell-induced effects on		
		dendritic sprouting,		
		axonal plasticity and		
		axonal transport		
hESC-NSCs	14 days' post	Increased	Signifi	cant
BG01 [39]	distal MCAo / IC	neurogenesis (Dcx	impro	vement:
	/ SVZ or SGZ	expression) in	•	
		ipsilateral SVZ, but not		(2 month) rate
		in contralateral or SGZ		
			•	Adnesive
				[117]
			•	Y maze [117]
			•	Elevated body
				swing test in
				older (24
				months) rats
				[118]
			No eff	ect:
			•	Elevated body
				swing in young
				(3 months) rats
				[118]

			Cylinder test in
			older (24
			months) rats
			[118]
Human fetal	48 hours' & 6	Mainly through	Not reported
striatal NSC [40]	weeks' post	paracrine effect, as cell	
	MCAo / IC / right	survival and	
	striatum	differentiation even	
		dosing at optimal	
		timing (1 week) was	
		inadequate for cell	
		replacement	
		Time window for	
		intervention before 17	
		to 18 days after	
		ischemia, avoiding	
		maximal activation of	
		microglia in response	
		to stroke	
Human striatal	2 days' or 3	Promoted striatal	Significant
neurospheres	weeks' MCAo /	neurogenesis	improvement:
[44]	IC / contralateral	Suppression of striatal	 Stepping test
	striatum	inflammation	(left forelimb:
			forehand &
			backhand) [44]
			Cylinder test
			[44]

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Stem Cells and Development

Stem Cells and Development This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

5	/
No effect:	
Stepping test (right forelimb forehand & backhand) [44]	: 4]

Abbreviations: CBF, cerebral blood flow; Dcx, doublecortin; hESC, human embryonic stem cell; IC, intracerebral; IS, intrastriatal; MCAo, middle cerebral artery occlusion; NPC, neural progenitor cell; hNSC, human neural stem cell; SGZ, subgranular zone of dentate gyrus; SVZ, subventricular zone; VEGF, vascular endothelial growth factor

Stem Cells and Development Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory to patients (doi: 10.1089/scd.2017.0009) This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

38

Table 2: Identity, stability and potency tests that are employed to characterize CTX cell

banks and/or drug product (for Phase II trial)

of.		
his pro	IESI	OUTCOME
om tl	PCR Sequencing of cDNA	Sequence of insert conforms to transgene identity.
fer fr		No insertions, deletions or mutations from
nay dif		expected sequence
sion 1	Determination of Flanking Nucleotide	Consistent with published sequence
shed ver	Sequence	
publi	PCR across integration site	PCR across integration site confirms cell line
ie final		identity
JI. Ti	Karyology	Comparable with published normal chromosome,
correctio		male XY
roof	Viability and growth	\geq 70% viability on recovery. Viable cell numbers at
ig and p		least double within 7 days
pyeditir	c-mycER ^{TAM} gene copy number (PCR)	Modal ~ 1 (range 0.87 – 3.46)
lergo co	Phenotypic marker (Nestin)	At least 95% of cells are Nestin positive
to une	Position, sequence and indication of	Chromosomal (Chr 13) localization of integrated
s yet	number of integrated target gene by	c-mycER ^{TAM} sequences
, but ha	Fluorescent In Situ Hybridization (FISH)	
ation	Potency	Cell dose-dependent IL10 production in co-culture
r public		with U937 monocyte cell line
ted fo	Neural Differentiation	Upregulation of Tub- β 3, GFAP and GAL-C marker
ccept		expression by Q-PCR following seeding into
d and a		Alvatex [®] 3-dimensional cell matrix

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory to patients (DOI: 10.1089/scd.2017.0009) Stem Cells and Development This paper has been peer-reviewe

Stem Cells and Develonment

Figure 1: Conditional growth of CTX0E03 is dependent upon the presence of 4hydroxytamoxifen

A) Proliferation: The conditional immortalizing gene c-*myc*ER^{TAM} generates a fusion protein of c-Myc and a hormone receptor (ER) that is regulated by 4-hydroxytamoxifen (4-OHT). In the presence of 4-OHT, the fusion protein (c-MycER) forms a dimer that translocates into the cell nucleus. Once in the nucleus, the dimer c-MycER activates the cell cycle and regulates the transcription of Telomerase Reverse Transcriptase (TERT), which controls long-term cell division with genetic stability. B) Removal of 4-OHT: When 4-OHT is removed from the cell media, the fusion proteins no longer form dimers and remain in the cytoplasm. Cell division is markedly reduced. Cells then begin to differentiate into neural phenotypes. C) In vivo environment: When cells are implanted into the brain, the c-*myc*ER^{TAM} gene is

Stem Cells and Development This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Stem Cells and Development

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory to patients (DOI: 10.1089/scd.2017.0009)

effectively "silenced" within 7 days by methylation of the promoter sequence. Thus,

the fusion protein is no longer expressed.

Figure 2: Co-culture of CTX cells with activated U937 cells induces a concentration dependent release of IL-10 and expression of the M2 marker CD206

The assay requires cells from the mouse monocyte cell line U937, activated using the phorbol ester, Phorbol 12-myristate 13-acetate (PMA) and the plating of CTX cells on pre-laminin coated 96-well plates at three different concentrations prior to their co-culture. The co-culture is established by adding the activated U937 cells at a fixed concentration (50,000 cells per well) to the attached CTX cells and then cultured for a period of 72 hours (A). Immunocytochemical analysis of the co-cultures fixed at 72 hours using a human specific anti-CD206 monoclonal antibody detected with anti-mouse Alexa Fluor 488 conjugated secondary antibody indicates the expression of CD206 (green), a marker of M2 polarization, by U937 cells visualized against a Hoechst nuclear counter stain (blue) (B). Culture media collected from each well at 72 hours was analyzed for IL-10 concentration using a human specific ELISA (R&D Systems). The data shown are mean ± SEM, (n=3) from three independent cell samples in pg/ml; CTX cells in co-culture with U937

paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Stem Cells and Development

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

This

Stem Cells and Development

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory to patients (DOI: 10.1089/scd.2017.0009)

42 cells promote a statistically significant dose dependent increase in IL-10 release compared with U937 cells cultured alone in a dose dependent manner (*** p=<0.001 ANOVA) (C). final published version may differ from this proof.

to patients (DOI: 10.1089/scd.2017.0009)

The

proof correction.

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and

Figure 3: Summary of CTX mechanisms of action in ischemic stroke

CTX cells are stored in a frozen state and thawed just prior to use. No further processing is required prior to administration. Cells are administered via stereotaxic intracerebral injection into an area adjacent to stroke damage that has maintained blood flow (putamen).

Whereas neuronal cell replacement/engraftment was hypothesized to be the most obvious mechanism of action, the observed pharmacokinetics of CTX cells does not support this theory. CTX cells may exert their therapeutic effect by paracrine mechanisms. Upregulation of VEGFA and chemokines CCL2 and CXCL12 suggests that these may be candidate factors.

In vivo, CTX treatment promotes recruitment, proliferation and/or maintenance of host cell populations including immune and stromal cells, neural progenitor and

Page 44 of 44

44

endothelial progenitor cell types. In vitro, CTX cells demonstrate immunomodulatory activity by promoting polarization of U937 cells from a pro-inflammatory to an alternative anti-inflammatory CD206, IL-10 producing phenotype commonly associated with tissue remodeling and repair.

Angiogenesis is promoted by CTX administration. CTX cell implantation restores von Willebrand Factor (a marker of angiogenesis) in the lesioned hemisphere to a level comparable with control (non-lesioned) tissue. Evidence of angiogenesis was demonstrated by de novo blood vessel formation and increased blood flow in the affected hemisphere in rat transient MCAo post implantation.

Analysis of treated brain sections shows that implantation of CTX cells into MCAo brain returns host cell proliferation in the subventricular zone (SVZ) to a similar level to that seen in sham-lesioned controls. CTX administration also increases the presence of proliferating microglia and neuroblasts in the striatum.

Stem Cells and Development

paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory

This